API Rate Limit Bypass
Category: Economic & Infrastructure Abuse
Severity: Medium
Description
Circumventing API rate limiting mechanisms to exceed allowed request quotas, potentially causing service degradation, increased costs, or denial of service conditions.
Technical Details
Attack Vector
- Rate limiting bypass techniques
- Request spoofing
- Distributed request patterns
- Rate limit implementation flaws
Common Techniques
- IP address rotation
- Header manipulation
- Request timing manipulation
- Distributed attack patterns
Impact
- Service Overload: Excessive API requests causing service degradation
- Cost Increase: Increased infrastructure costs from excessive usage
- Resource Depletion: Exhaustion of API resources and quotas
- Service Disruption: Potential denial of service conditions
Detection Methods
Rate Limit Monitoring
- Monitor API request patterns
- Track rate limit violations
- Detect bypass attempts
- Analyze request patterns
Usage Analysis
- Analyze API usage patterns
- Monitor request frequency
- Track user behavior
- Detect anomalous usage
Mitigation Strategies
Rate Limiting
- Implement robust rate limiting
- Use multiple rate limit layers
- Deploy advanced rate limiting algorithms
- Monitor rate limit effectiveness
API Protection
- Implement API authentication
- Use request validation
- Deploy API monitoring
- Monitor API security
Real-World Examples
Example 1: IP Address Rotation
# Vulnerable rate limiting by IP
class SimpleRateLimiter:
def __init__(self):
self.requests = {}
def check_rate_limit(self, ip_address):
current_time = time.time()
if ip_address not in self.requests:
self.requests[ip_address] = []
# Remove old requests
self.requests[ip_address] = [
req for req in self.requests[ip_address]
if current_time - req < 60 # 1 minute window
]
# Check limit
if len(self.requests[ip_address]) >= 100:
return False
self.requests[ip_address].append(current_time)
return True
# Attacker rotates IP addresses
# ip_addresses = ["1.1.1.1", "2.2.2.2", "3.3.3.3", ...]
Example 2: Header Manipulation
# Vulnerable rate limiting by User-Agent
class UserAgentRateLimiter:
def __init__(self):
self.requests = {}
def check_rate_limit(self, user_agent):
# Rate limit based on User-Agent header
if user_agent not in self.requests:
self.requests[user_agent] = 0
self.requests[user_agent] += 1
if self.requests[user_agent] > 1000:
return False
return True
# Attacker rotates User-Agent headers
# user_agent = f"Mozilla/5.0 (Random{i})"
Example 3: Request Timing Manipulation
# Vulnerable time-based rate limiting
class TimingRateLimiter:
def __init__(self):
self.last_request = {}
def check_rate_limit(self, user_id):
current_time = time.time()
if user_id in self.last_request:
time_diff = current_time - self.last_request[user_id]
if time_diff < 1: # 1 second minimum
return False
self.last_request[user_id] = current_time
return True
# Attacker uses precise timing
# time.sleep(1.001) # Just over 1 second
References & Sources
- Equixly - “MCP Servers: The New Security Nightmare”
- Red Hat - “Model Context Protocol (MCP): Understanding security risks and controls”
Related TTPs
API rate limit bypass can lead to service degradation and increased costs through excessive API usage beyond intended limits.