Runtime Monitoring

Overview: Comprehensive monitoring of MCP system operations, tool usage, and security events.

Runtime monitoring provides visibility into MCP system behavior, enabling early detection of security threats, performance issues, and operational anomalies. This guide covers monitoring strategies, implementation approaches, and best practices.

Monitoring Architecture

Comprehensive Monitoring Stack

# Comprehensive monitoring system for MCP
import time
import json
import logging
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from enum import Enum
import asyncio
from datetime import datetime

class MonitoringLevel(Enum):
    DEBUG = "debug"
    INFO = "info"
    WARNING = "warning"
    ERROR = "error"
    CRITICAL = "critical"

@dataclass
class MonitoringEvent:
    timestamp: float
    level: MonitoringLevel
    category: str
    source: str
    event_type: str
    message: str
    metadata: Dict[str, Any]
    tags: List[str]

class MCPRuntimeMonitor:
    def __init__(self):
        self.metrics_collector = MetricsCollector()
        self.log_aggregator = LogAggregator()
        self.alert_manager = AlertManager()
        self.anomaly_detector = AnomalyDetector()
        self.dashboard = MonitoringDashboard()
        
    def start_monitoring(self):
        """Start comprehensive monitoring system"""
        
        # Start metrics collection
        self.metrics_collector.start()
        
        # Start log aggregation
        self.log_aggregator.start()
        
        # Start anomaly detection
        self.anomaly_detector.start()
        
        # Start real-time analysis
        asyncio.create_task(self.analyze_events())
        
        # Start dashboard
        self.dashboard.start()
    
    async def analyze_events(self):
        """Analyze monitoring events in real-time"""
        
        while True:
            try:
                # Collect events from all sources
                events = await self.collect_events()
                
                # Process each event
                for event in events:
                    await self.process_event(event)
                
                await asyncio.sleep(1)  # Analysis interval
                
            except Exception as e:
                logging.error(f"Error in event analysis: {e}")
    
    async def process_event(self, event: MonitoringEvent):
        """Process individual monitoring event"""
        
        # Log event
        self.log_aggregator.log_event(event)
        
        # Update metrics
        self.metrics_collector.update_metrics(event)
        
        # Check for anomalies
        if self.anomaly_detector.is_anomaly(event):
            await self.handle_anomaly(event)
        
        # Check alert conditions
        if self.should_alert(event):
            await self.alert_manager.send_alert(event)
        
        # Update dashboard
        self.dashboard.update_display(event)
    
    def should_alert(self, event: MonitoringEvent) -> bool:
        """Determine if event should trigger an alert"""
        
        # Critical events always alert
        if event.level == MonitoringLevel.CRITICAL:
            return True
        
        # Security events alert
        if event.category == "security":
            return True
        
        # Performance degradation alerts
        if event.category == "performance" and event.level == MonitoringLevel.WARNING:
            return True
        
        # Tool failure alerts
        if event.category == "tool_execution" and event.level == MonitoringLevel.ERROR:
            return True
        
        return False

class MetricsCollector:
    def __init__(self):
        self.metrics_storage = {}
        self.metric_definitions = self.define_metrics()
        
    def define_metrics(self) -> Dict[str, Dict]:
        """Define metrics to collect"""
        
        return {
            # System metrics
            "cpu_usage": {"type": "gauge", "unit": "percent"},
            "memory_usage": {"type": "gauge", "unit": "bytes"},
            "disk_usage": {"type": "gauge", "unit": "bytes"},
            "network_throughput": {"type": "gauge", "unit": "bytes/sec"},
            
            # Tool metrics
            "tool_execution_count": {"type": "counter", "unit": "count"},
            "tool_execution_time": {"type": "histogram", "unit": "seconds"},
            "tool_success_rate": {"type": "gauge", "unit": "percent"},
            "tool_error_rate": {"type": "gauge", "unit": "percent"},
            
            # Security metrics
            "authentication_attempts": {"type": "counter", "unit": "count"},
            "authentication_failures": {"type": "counter", "unit": "count"},
            "authorization_denials": {"type": "counter", "unit": "count"},
            "suspicious_activities": {"type": "counter", "unit": "count"},
            
            # Performance metrics
            "request_latency": {"type": "histogram", "unit": "seconds"},
            "request_throughput": {"type": "gauge", "unit": "requests/sec"},
            "error_rate": {"type": "gauge", "unit": "percent"},
            "availability": {"type": "gauge", "unit": "percent"}
        }
    
    def collect_system_metrics(self) -> Dict[str, float]:
        """Collect system-level metrics"""
        
        import psutil
        
        return {
            "cpu_usage": psutil.cpu_percent(),
            "memory_usage": psutil.virtual_memory().used,
            "disk_usage": psutil.disk_usage('/').used,
            "network_throughput": self.get_network_throughput()
        }
    
    def collect_tool_metrics(self) -> Dict[str, float]:
        """Collect tool execution metrics"""
        
        # Get tool execution statistics
        tool_stats = self.get_tool_statistics()
        
        return {
            "tool_execution_count": tool_stats.get("total_executions", 0),
            "tool_success_rate": tool_stats.get("success_rate", 0),
            "tool_error_rate": tool_stats.get("error_rate", 0),
            "tool_execution_time": tool_stats.get("avg_execution_time", 0)
        }
    
    def collect_security_metrics(self) -> Dict[str, float]:
        """Collect security-related metrics"""
        
        # Get security statistics
        security_stats = self.get_security_statistics()
        
        return {
            "authentication_attempts": security_stats.get("auth_attempts", 0),
            "authentication_failures": security_stats.get("auth_failures", 0),
            "authorization_denials": security_stats.get("authz_denials", 0),
            "suspicious_activities": security_stats.get("suspicious_count", 0)
        }
    
    def update_metrics(self, event: MonitoringEvent):
        """Update metrics based on monitoring event"""
        
        # Update relevant metrics based on event
        if event.category == "tool_execution":
            self.increment_counter("tool_execution_count")
            
            if event.level == MonitoringLevel.ERROR:
                self.increment_counter("tool_error_count")
            
            execution_time = event.metadata.get("execution_time", 0)
            if execution_time > 0:
                self.record_histogram("tool_execution_time", execution_time)
        
        elif event.category == "security":
            if event.event_type == "authentication_attempt":
                self.increment_counter("authentication_attempts")
                
                if event.level == MonitoringLevel.ERROR:
                    self.increment_counter("authentication_failures")
            
            elif event.event_type == "authorization_denial":
                self.increment_counter("authorization_denials")
        
        elif event.category == "performance":
            if event.event_type == "request_processed":
                latency = event.metadata.get("latency", 0)
                if latency > 0:
                    self.record_histogram("request_latency", latency)

Tool Usage Monitoring

Tool Execution Tracking

# Tool execution monitoring
class ToolExecutionMonitor:
    def __init__(self):
        self.execution_history = []
        self.performance_metrics = {}
        self.usage_patterns = {}
        self.anomaly_detector = ToolAnomalyDetector()
        
    def monitor_tool_execution(self, tool_name: str, user_id: str, parameters: Dict) -> ExecutionContext:
        """Monitor tool execution from start to finish"""
        
        # Create execution context
        execution_id = self.generate_execution_id()
        context = ExecutionContext(
            execution_id=execution_id,
            tool_name=tool_name,
            user_id=user_id,
            parameters=parameters,
            start_time=time.time(),
            status="running"
        )
        
        # Record execution start
        self.record_execution_start(context)
        
        return context
    
    def record_execution_start(self, context: ExecutionContext):
        """Record tool execution start"""
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=MonitoringLevel.INFO,
            category="tool_execution",
            source="tool_monitor",
            event_type="execution_start",
            message=f"Tool {context.tool_name} execution started",
            metadata={
                "execution_id": context.execution_id,
                "tool_name": context.tool_name,
                "user_id": context.user_id,
                "parameters": context.parameters
            },
            tags=["tool", "execution", "start"]
        )
        
        self.log_event(event)
    
    def record_execution_complete(self, context: ExecutionContext, result: Dict):
        """Record tool execution completion"""
        
        context.end_time = time.time()
        context.execution_time = context.end_time - context.start_time
        context.result = result
        context.status = "completed"
        
        # Determine success/failure
        success = result.get("success", False)
        level = MonitoringLevel.INFO if success else MonitoringLevel.ERROR
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=level,
            category="tool_execution",
            source="tool_monitor",
            event_type="execution_complete",
            message=f"Tool {context.tool_name} execution completed",
            metadata={
                "execution_id": context.execution_id,
                "tool_name": context.tool_name,
                "user_id": context.user_id,
                "execution_time": context.execution_time,
                "success": success,
                "result": result
            },
            tags=["tool", "execution", "complete"]
        )
        
        self.log_event(event)
        
        # Update performance metrics
        self.update_tool_performance_metrics(context)
        
        # Analyze usage patterns
        self.analyze_usage_patterns(context)
        
        # Check for anomalies
        self.check_execution_anomalies(context)
    
    def update_tool_performance_metrics(self, context: ExecutionContext):
        """Update performance metrics for tool"""
        
        tool_name = context.tool_name
        
        if tool_name not in self.performance_metrics:
            self.performance_metrics[tool_name] = {
                "total_executions": 0,
                "successful_executions": 0,
                "failed_executions": 0,
                "total_execution_time": 0,
                "average_execution_time": 0,
                "min_execution_time": float('inf'),
                "max_execution_time": 0
            }
        
        metrics = self.performance_metrics[tool_name]
        
        # Update counters
        metrics["total_executions"] += 1
        metrics["total_execution_time"] += context.execution_time
        
        if context.result.get("success", False):
            metrics["successful_executions"] += 1
        else:
            metrics["failed_executions"] += 1
        
        # Update timing metrics
        metrics["average_execution_time"] = metrics["total_execution_time"] / metrics["total_executions"]
        metrics["min_execution_time"] = min(metrics["min_execution_time"], context.execution_time)
        metrics["max_execution_time"] = max(metrics["max_execution_time"], context.execution_time)
    
    def analyze_usage_patterns(self, context: ExecutionContext):
        """Analyze tool usage patterns"""
        
        user_id = context.user_id
        tool_name = context.tool_name
        
        # Update user usage patterns
        if user_id not in self.usage_patterns:
            self.usage_patterns[user_id] = {}
        
        if tool_name not in self.usage_patterns[user_id]:
            self.usage_patterns[user_id][tool_name] = {
                "usage_count": 0,
                "last_used": 0,
                "usage_times": [],
                "parameter_patterns": {}
            }
        
        user_tool_pattern = self.usage_patterns[user_id][tool_name]
        
        # Update usage statistics
        user_tool_pattern["usage_count"] += 1
        user_tool_pattern["last_used"] = context.end_time
        user_tool_pattern["usage_times"].append(context.start_time)
        
        # Analyze parameter patterns
        self.analyze_parameter_patterns(user_tool_pattern, context.parameters)
    
    def check_execution_anomalies(self, context: ExecutionContext):
        """Check for anomalies in tool execution"""
        
        anomalies = self.anomaly_detector.detect_anomalies(context)
        
        for anomaly in anomalies:
            event = MonitoringEvent(
                timestamp=time.time(),
                level=MonitoringLevel.WARNING,
                category="anomaly",
                source="tool_monitor",
                event_type="execution_anomaly",
                message=f"Anomaly detected in tool {context.tool_name}: {anomaly.description}",
                metadata={
                    "execution_id": context.execution_id,
                    "tool_name": context.tool_name,
                    "user_id": context.user_id,
                    "anomaly_type": anomaly.type,
                    "anomaly_score": anomaly.score,
                    "description": anomaly.description
                },
                tags=["anomaly", "tool", "execution"]
            )
            
            self.log_event(event)

Security Event Monitoring

Security Event Detection

# Security event monitoring
class SecurityEventMonitor:
    def __init__(self):
        self.threat_detector = ThreatDetector()
        self.behavioral_analyzer = BehavioralAnalyzer()
        self.security_rules = self.load_security_rules()
        
    def monitor_authentication_event(self, user_id: str, event_type: str, result: str, metadata: Dict):
        """Monitor authentication events"""
        
        level = MonitoringLevel.INFO if result == "success" else MonitoringLevel.WARNING
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=level,
            category="security",
            source="auth_monitor",
            event_type="authentication",
            message=f"Authentication {event_type} for user {user_id}: {result}",
            metadata={
                "user_id": user_id,
                "event_type": event_type,
                "result": result,
                "ip_address": metadata.get("ip_address"),
                "user_agent": metadata.get("user_agent"),
                "timestamp": metadata.get("timestamp")
            },
            tags=["security", "authentication", result]
        )
        
        self.process_security_event(event)
    
    def monitor_authorization_event(self, user_id: str, resource: str, action: str, result: str, metadata: Dict):
        """Monitor authorization events"""
        
        level = MonitoringLevel.INFO if result == "allowed" else MonitoringLevel.WARNING
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=level,
            category="security",
            source="authz_monitor",
            event_type="authorization",
            message=f"Authorization {action} on {resource} for user {user_id}: {result}",
            metadata={
                "user_id": user_id,
                "resource": resource,
                "action": action,
                "result": result,
                "permissions": metadata.get("permissions", []),
                "context": metadata.get("context", {})
            },
            tags=["security", "authorization", result]
        )
        
        self.process_security_event(event)
    
    def monitor_data_access_event(self, user_id: str, data_type: str, operation: str, metadata: Dict):
        """Monitor data access events"""
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=MonitoringLevel.INFO,
            category="security",
            source="data_monitor",
            event_type="data_access",
            message=f"Data access: {operation} on {data_type} by user {user_id}",
            metadata={
                "user_id": user_id,
                "data_type": data_type,
                "operation": operation,
                "data_classification": metadata.get("data_classification"),
                "access_context": metadata.get("access_context"),
                "data_volume": metadata.get("data_volume")
            },
            tags=["security", "data", "access"]
        )
        
        self.process_security_event(event)
    
    def process_security_event(self, event: MonitoringEvent):
        """Process security event through analysis pipeline"""
        
        # Apply security rules
        for rule in self.security_rules:
            if rule.matches(event):
                rule_result = rule.evaluate(event)
                
                if rule_result.triggered:
                    self.handle_security_rule_trigger(event, rule, rule_result)
        
        # Behavioral analysis
        behavioral_analysis = self.behavioral_analyzer.analyze_event(event)
        
        if behavioral_analysis.anomalous:
            self.handle_behavioral_anomaly(event, behavioral_analysis)
        
        # Threat detection
        threat_analysis = self.threat_detector.analyze_event(event)
        
        if threat_analysis.threat_detected:
            self.handle_threat_detection(event, threat_analysis)
    
    def handle_security_rule_trigger(self, event: MonitoringEvent, rule: SecurityRule, result: RuleResult):
        """Handle security rule trigger"""
        
        alert_event = MonitoringEvent(
            timestamp=time.time(),
            level=MonitoringLevel.CRITICAL,
            category="security_alert",
            source="security_monitor",
            event_type="rule_trigger",
            message=f"Security rule triggered: {rule.name}",
            metadata={
                "original_event": event.metadata,
                "rule_name": rule.name,
                "rule_description": rule.description,
                "severity": result.severity,
                "recommended_action": result.recommended_action
            },
            tags=["security", "alert", "rule", rule.name]
        )
        
        self.log_event(alert_event)
    
    def load_security_rules(self) -> List[SecurityRule]:
        """Load security detection rules"""
        
        return [
            # Brute force detection
            SecurityRule(
                name="brute_force_detection",
                description="Detect brute force authentication attempts",
                condition=lambda event: (
                    event.category == "security" and
                    event.event_type == "authentication" and
                    event.metadata.get("result") == "failure"
                ),
                threshold=5,
                time_window=300,  # 5 minutes
                severity="high"
            ),
            
            # Privilege escalation detection
            SecurityRule(
                name="privilege_escalation",
                description="Detect privilege escalation attempts",
                condition=lambda event: (
                    event.category == "security" and
                    event.event_type == "authorization" and
                    event.metadata.get("result") == "denied" and
                    "admin" in event.metadata.get("resource", "")
                ),
                threshold=3,
                time_window=60,  # 1 minute
                severity="critical"
            ),
            
            # Unusual data access
            SecurityRule(
                name="unusual_data_access",
                description="Detect unusual data access patterns",
                condition=lambda event: (
                    event.category == "security" and
                    event.event_type == "data_access" and
                    event.metadata.get("data_classification") == "sensitive"
                ),
                threshold=10,
                time_window=3600,  # 1 hour
                severity="medium"
            )
        ]

Performance Monitoring

System Performance Tracking

# Performance monitoring
class PerformanceMonitor:
    def __init__(self):
        self.performance_metrics = {}
        self.baseline_metrics = {}
        self.performance_thresholds = self.define_thresholds()
        
    def define_thresholds(self) -> Dict[str, Dict]:
        """Define performance thresholds"""
        
        return {
            "response_time": {"warning": 1.0, "critical": 5.0},
            "cpu_usage": {"warning": 80.0, "critical": 95.0},
            "memory_usage": {"warning": 85.0, "critical": 95.0},
            "disk_usage": {"warning": 80.0, "critical": 90.0},
            "error_rate": {"warning": 5.0, "critical": 10.0},
            "throughput": {"warning": 100, "critical": 50}  # requests/second
        }
    
    def monitor_request_performance(self, request_id: str, start_time: float, end_time: float, success: bool):
        """Monitor individual request performance"""
        
        response_time = end_time - start_time
        
        # Check response time thresholds
        level = MonitoringLevel.INFO
        if response_time > self.performance_thresholds["response_time"]["critical"]:
            level = MonitoringLevel.CRITICAL
        elif response_time > self.performance_thresholds["response_time"]["warning"]:
            level = MonitoringLevel.WARNING
        
        event = MonitoringEvent(
            timestamp=time.time(),
            level=level,
            category="performance",
            source="performance_monitor",
            event_type="request_performance",
            message=f"Request {request_id} completed in {response_time:.2f}s",
            metadata={
                "request_id": request_id,
                "response_time": response_time,
                "success": success,
                "start_time": start_time,
                "end_time": end_time
            },
            tags=["performance", "request", "response_time"]
        )
        
        self.log_event(event)
    
    def monitor_system_performance(self):
        """Monitor system-level performance"""
        
        # Collect system metrics
        system_metrics = self.collect_system_metrics()
        
        # Check each metric against thresholds
        for metric_name, value in system_metrics.items():
            if metric_name in self.performance_thresholds:
                thresholds = self.performance_thresholds[metric_name]
                
                level = MonitoringLevel.INFO
                if value > thresholds["critical"]:
                    level = MonitoringLevel.CRITICAL
                elif value > thresholds["warning"]:
                    level = MonitoringLevel.WARNING
                
                event = MonitoringEvent(
                    timestamp=time.time(),
                    level=level,
                    category="performance",
                    source="performance_monitor",
                    event_type="system_performance",
                    message=f"System {metric_name}: {value}",
                    metadata={
                        "metric_name": metric_name,
                        "value": value,
                        "threshold_warning": thresholds["warning"],
                        "threshold_critical": thresholds["critical"]
                    },
                    tags=["performance", "system", metric_name]
                )
                
                self.log_event(event)

Alerting and Notifications

Alert Management System

# Alert management
class AlertManager:
    def __init__(self):
        self.alert_channels = {}
        self.alert_rules = {}
        self.alert_history = []
        self.notification_service = NotificationService()
        
    def setup_alert_channels(self):
        """Setup alert notification channels"""
        
        self.alert_channels = {
            "email": EmailAlertChannel(),
            "slack": SlackAlertChannel(),
            "pagerduty": PagerDutyAlertChannel(),
            "webhook": WebhookAlertChannel()
        }
    
    def create_alert(self, event: MonitoringEvent, alert_type: str, severity: str) -> Alert:
        """Create alert from monitoring event"""
        
        alert = Alert(
            id=self.generate_alert_id(),
            timestamp=time.time(),
            event=event,
            alert_type=alert_type,
            severity=severity,
            status="new",
            description=self.generate_alert_description(event),
            metadata=event.metadata
        )
        
        return alert
    
    def process_alert(self, alert: Alert):
        """Process alert through notification channels"""
        
        # Determine notification channels based on severity
        channels = self.get_notification_channels(alert.severity)
        
        # Send notifications
        for channel in channels:
            try:
                self.send_notification(channel, alert)
            except Exception as e:
                logging.error(f"Failed to send alert via {channel}: {e}")
        
        # Record alert
        self.alert_history.append(alert)
        
        # Update alert status
        alert.status = "sent"
    
    def get_notification_channels(self, severity: str) -> List[str]:
        """Get notification channels based on severity"""
        
        channel_mapping = {
            "low": ["email"],
            "medium": ["email", "slack"],
            "high": ["email", "slack", "pagerduty"],
            "critical": ["email", "slack", "pagerduty", "webhook"]
        }
        
        return channel_mapping.get(severity, ["email"])
    
    def send_notification(self, channel: str, alert: Alert):
        """Send notification via specified channel"""
        
        if channel in self.alert_channels:
            self.alert_channels[channel].send_alert(alert)
        else:
            logging.warning(f"Unknown alert channel: {channel}")

Dashboard and Visualization

Monitoring Dashboard

# Monitoring dashboard
class MonitoringDashboard:
    def __init__(self):
        self.dashboard_data = {}
        self.widgets = {}
        self.update_interval = 30  # seconds
        
    def setup_dashboard(self):
        """Setup monitoring dashboard"""
        
        # System overview widget
        self.widgets["system_overview"] = SystemOverviewWidget()
        
        # Tool performance widget
        self.widgets["tool_performance"] = ToolPerformanceWidget()
        
        # Security events widget
        self.widgets["security_events"] = SecurityEventsWidget()
        
        # Alert summary widget
        self.widgets["alert_summary"] = AlertSummaryWidget()
        
        # Performance metrics widget
        self.widgets["performance_metrics"] = PerformanceMetricsWidget()
    
    def update_dashboard(self, events: List[MonitoringEvent]):
        """Update dashboard with latest events"""
        
        # Update each widget
        for widget_name, widget in self.widgets.items():
            try:
                widget.update(events)
            except Exception as e:
                logging.error(f"Failed to update widget {widget_name}: {e}")
        
        # Update dashboard data
        self.dashboard_data = {
            "last_updated": time.time(),
            "widgets": {name: widget.get_data() for name, widget in self.widgets.items()}
        }
    
    def get_dashboard_data(self) -> Dict:
        """Get current dashboard data"""
        
        return self.dashboard_data

Integration and Deployment

Monitoring Integration

# Complete monitoring integration
class ComprehensiveMonitoringSystem:
    def __init__(self):
        self.runtime_monitor = MCPRuntimeMonitor()
        self.tool_monitor = ToolExecutionMonitor()
        self.security_monitor = SecurityEventMonitor()
        self.performance_monitor = PerformanceMonitor()
        self.alert_manager = AlertManager()
        self.dashboard = MonitoringDashboard()
        
    def initialize_monitoring(self):
        """Initialize complete monitoring system"""
        
        # Setup components
        self.runtime_monitor.start_monitoring()
        self.alert_manager.setup_alert_channels()
        self.dashboard.setup_dashboard()
        
        # Start background tasks
        asyncio.create_task(self.monitoring_loop())
    
    async def monitoring_loop(self):
        """Main monitoring loop"""
        
        while True:
            try:
                # Collect all monitoring data
                events = await self.collect_all_events()
                
                # Process events
                for event in events:
                    await self.process_monitoring_event(event)
                
                # Update dashboard
                self.dashboard.update_dashboard(events)
                
                await asyncio.sleep(self.update_interval)
                
            except Exception as e:
                logging.error(f"Error in monitoring loop: {e}")
    
    async def process_monitoring_event(self, event: MonitoringEvent):
        """Process monitoring event through all systems"""
        
        # Security event processing
        if event.category == "security":
            self.security_monitor.process_security_event(event)
        
        # Performance event processing
        elif event.category == "performance":
            self.performance_monitor.process_performance_event(event)
        
        # Tool execution event processing
        elif event.category == "tool_execution":
            self.tool_monitor.process_tool_event(event)
        
        # Check for alerts
        if self.should_create_alert(event):
            alert = self.alert_manager.create_alert(
                event,
                alert_type=event.category,
                severity=self.determine_severity(event)
            )
            
            await self.alert_manager.process_alert(alert)

Runtime Monitoring provides comprehensive visibility into MCP system operations, enabling proactive security management and performance optimization.